Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Masatoshi Kawahata, ${ }^{\text {a }}$ Noriko Saito, ${ }^{\text {b }}$ Tsutomu Ishikawa ${ }^{\text {b }}$ and Kentaro Yamaguchi ${ }^{\text {a* }}$

${ }^{\text {a }}$ Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki-shi, Kagawa 769-2193, Japan, and ${ }^{\mathbf{b}}$ Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan

Correspondence e-mail:
yamaguchi@kph.bunri-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.083$
Data-to-parameter ratio $=10.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(4R,5R)-1,3-Dimethyl-4,5-diphenylimidazolidin-2-one

The title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$, was obtained by methylation of ($4 R, 5 R$)-4,5-diphenylimidazolidin-2-one. The $\mathrm{C}-\mathrm{O}$ bond exhibits double-bond character, and both $\mathrm{C}-\mathrm{N}$ bonds in the urea group are intermediate between single and double bonds.

Comment

We have been developing guanidine chemistry (Ishikawa et al., 2006), focusing on the potential abilities of the guanidyl functions, such as for chiral auxiliaries (Kitani et al., 2005). The title compound, (I), is an important key intermediate and can be chlorinated with oxalyl chloride to afford the corresponding chloroamidinium chloride, (II). Recently, (II) was found to be a good source for a carbene ligand (Kremzow et al., 2005).

Received 10 July 2006 Accepted 13 July 2006

(I)

(II)

The molecular structure and atom-numbering scheme of (I) are shown in Fig. 1. Selected geometric parameters are presented in Table 1. The urea group is found to be almost planar, with the sum of angles $(\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2, \mathrm{~N} 1-\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 1$) being almost 360°. In calculating the mean plane through the urea group, the largest deviation from planarity is for C1 [0.0021 (13) \AA]. The shortness of the C1O1 bond indicates obvious double-bond character, while the $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 2-\mathrm{C} 1$ bonds are intermediate between single and double bonds due to resonance.

Experimental

(4R,5R)-1,3-Dimethyl-4,5-diphenylimidazolidin-2-one was prepared by methylation of ($4 R, 5 R$)-4,5-diphenylimidazolidin-2-one according to the literature method of Isobe et al. (1998). To a suspension of NaH (60% in mineral oil, $1.64 \mathrm{~g}, 41.10 \mathrm{mmol}$) in DMF was added a solution of $(4 R, 5 R)$-4,5-diphenylimidazolidin-2-one $(4.42 \mathrm{~g}, 18.56 \mathrm{mmol}, 1.0$ equivalent) in DMF (4 ml) under argon and the mixture was stirred at room temperature for 1 h . After addition of iodomethane $(2.6 \mathrm{ml}$, $40.93 \mathrm{mmol}, 2.2$ equivalents), the mixture was stirred at room
temperature for 1 h , poured into 5% aqueous $\mathrm{HCl}(100 \mathrm{ml})$, and then extracted with AcOEt ($100 \mathrm{ml}, 50 \mathrm{ml} \times 2$). The organic solutions were combined, successively washed with 20% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (40 ml), water and brine, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, and then evaporated to dryness under reduced pressure. Purification of the residue by recrystallization from AcOEt gave (4R,5R)-1,3-dimethyl-4,5-diphenylimidazolidin-2-one as colourless prisms ($4.26 \mathrm{~g}, 86 \%$; m.p. 432-434 K). IR (ATR, cm^{-1}): $1702(\mathrm{C}=\mathrm{O})$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=266.33$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.0509$ (14) \AA
$b=10.3340$ (15) \AA
$c=14.075$ (2) A
$V=1461.9(4) \AA^{3}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: none
8831 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.083$
$S=1.18$
1928 reflections
183 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.210 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.40 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

1928 independent reflections 1738 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$ $\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0407 P)^{2}\right. \\
& \quad+0.0934 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.382(2)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.222(2)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.371(2)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$107.98(13)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 1$	$126.67(15)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$125.35(15)$		

H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$) and treated as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The absolute configuration was assumed from that of the starting material, which

Figure 1
The molecular structure of (I), showing atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
reacts with retention of the configuration; in the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ishikawa, T. \& Kumamoto, T. (2006). Synthesis, pp. 737-752.
Isobe, T., Fukuda, K. \& Ishikawa, T. (1998). Tetrahedron Asymmetry, 9, 17291735.

Kitani, Y., Kumamoto, T., Isobe, T., Fukuda, K. \& Ishikawa, T. (2005). Adv. Synth. Catal. 347, 1653-1658.
Kremzow, D., Seidel, G., Lehmann, C. W. \& Fürstner, A. (2005). Chem. Eur. J. 11, 1833-1853.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

